matrix polymers

Experts In Rotomoulding Materials

Rethinking Resources: Pioneering Sustainable Material Solutions for Rotomoulding

Jake Kelly-Walley & Szymon Jedrzejak

Agenda

 Polymer Industry Background
Looking at Rotomoulding
Recyclate and Recycling
Carbon Footprint, Renewables and Biopolymers
Summary

About Us

>1,700 Customers

>150 KTA Capacity

>100 KTA Sales

>30 Years Service

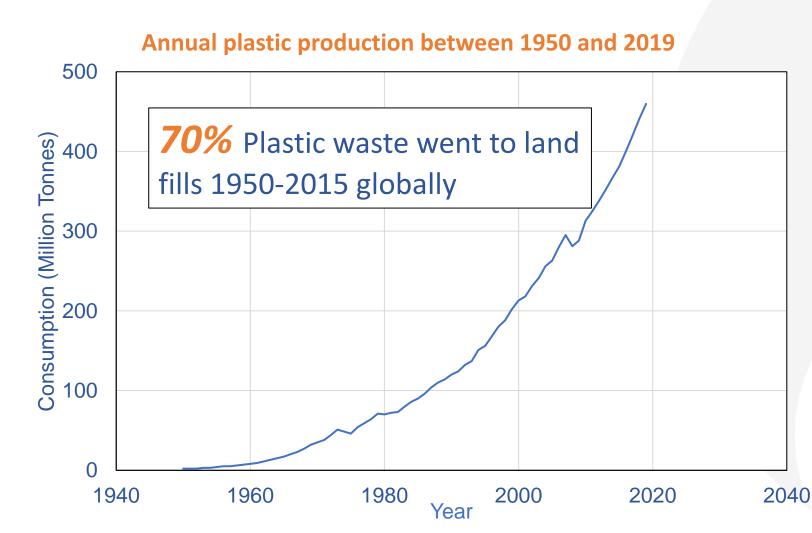
>70 Countries

>5,000 Colour Matches

49% PTT GC

45% Colour Powder 37% Natural Granules 14% Natural Powder 4% Speciality Powder

Global Footprint



Six Manufacturing Sites Across Three Continents

The Plastics Industry is Growing!

Poland significantpercentage of Europeanplastics Market6.8%

27% of Plastic Waste Recycled in Poland

Production has **tripled in Poland in the last 15 years**.

European Parliament, 2021, B. Bara, 2021, European Environmental Agency, 2021, Our World in Data, 2023

Taking a look at the Plastics Industry

Nation

WWF

- By 2050, based on current projections, production and incineration of plastics will account for 10-13% of the global annual carbon budget
- 11% Plastics production green house gas emissions are from LDPE/LLDPE

- By 2050, more plastic in the ocean than fish
- By 2030, equivalent of a football stadium filled with plastic every day will be in the ocean
- 46% plastic waste is landfilled, 22% mismanaged

Taking a look at the Rotomoulding

Carbon Footprint in Manufacturing

- 2-3.5% efficiency calculated for conventional Rotomoulding Process
- Dependent on Gas
- New technologies and process control

Waste Generation and Recycling

- Challenges with processability
- Recycled materials are not always 'Roto-friendly'
- Relatively low waste

Rethinking Resources:

Recyclate and Recycling

Recyclate Materials

Post-Consumer Recyclate (PCR)

- Waste from households
- Not designed for Roto
- Highly abundant and available
- Can vary significantly

Recyclate Materials

Post-Consumer Recyclate (PCR)

- Waste from households
- Not designed for Roto
- Highly abundant and available
- Can vary significantly

Post-Industrial Recyclate (PIR)

- From end of life industrial parts
- Could be Roto plastics, but also other processes
- Consistency greater than PCR

Recyclate Materials

Post-Consumer Recyclate (PCR)

- Waste from households
- Not designed for Roto
- Highly abundant and available
- Can vary significantly

Post-Industrial Recyclate (PIR)

- From end of life industrial parts
- Could be Roto plastics, but also other processes
- Consistency greater than PCR

Post-Process Material (Regrind)

- Scrap from manufacturing
- Clean and consistent with traceability
- Not regarded by bodies as recyclate

Post Consumer Resin

"Post-consumer resin (PCR), also known as postconsumer recycled content, is plastic material that can no longer be used for its intended purpose. It can be generated by households or by commercial, industrial, and institutional facilities in their role as end-users of the product. PCR is different than PIR (Post-industrial resin/recycled content)."

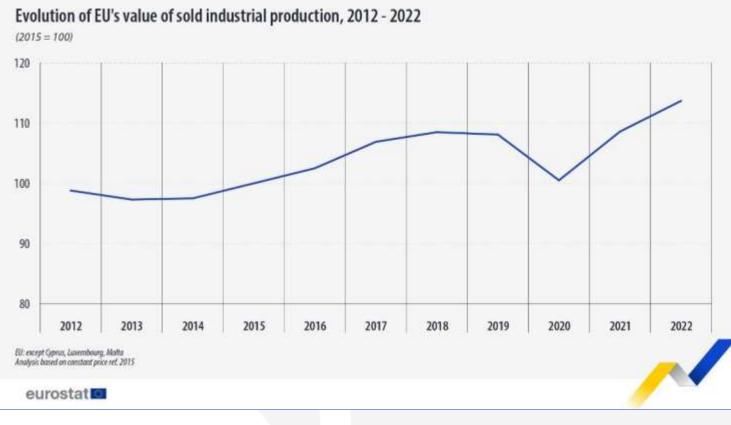
EcoMould PCR Range

- Consistency and Quality of PCR Feedstock
- Compliant with many internal food standard
- Fully 'restabilised' against heat and light degradation
- Established relationship between PCR and performance
- Opportunities to meet future European Commission and EU Directives

Image Courtesy of Moulding Service – water reservoir for washing floor machine

Rethinking Resources:

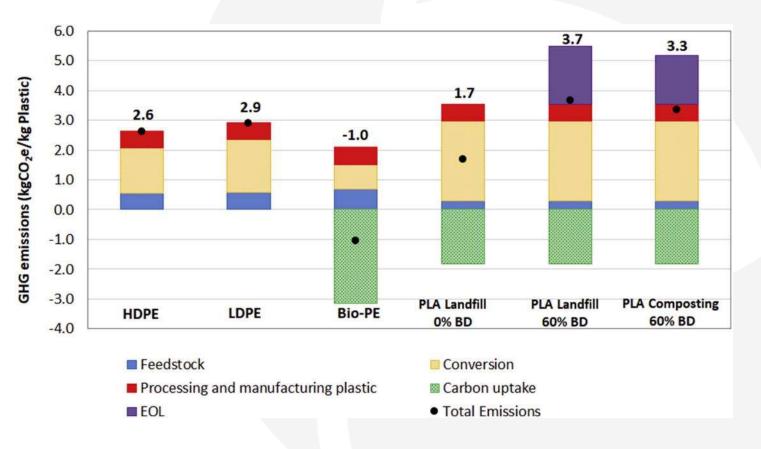
Renewables and Bio-polymer



Addressing Carbon Footprint

- Optimization ofRotomoulding Process
- Process Control
- Measuring energy consumption
- Using renewable energy

But what about the material you put inside your tool?



Comparing Fossil and Renewables

Carbon

captured/absorbed during growth of renewable feedstocks, overcoming production emissions

Benefits of Biopolymers

Reduction in Carbon Footprint

- Reduction in carbon footprint of final product and operations
- Feedstocks when grown absorb CO₂

Benefits of Biopolymers

Reduction in Carbon Footprint

- Reduction in carbon footprint of final product and operations
- Feedstocks when grown absorb CO₂

Use of Renewable Resources

- Replacement of fossil fuels
- Use of renewable feedstocks which are responsibility sourced

Benefits of Biopolymers

Reduction in Carbon Footprint

- Reduction in carbon footprint of final product and operations
- Feedstocks when grown absorb CO₂

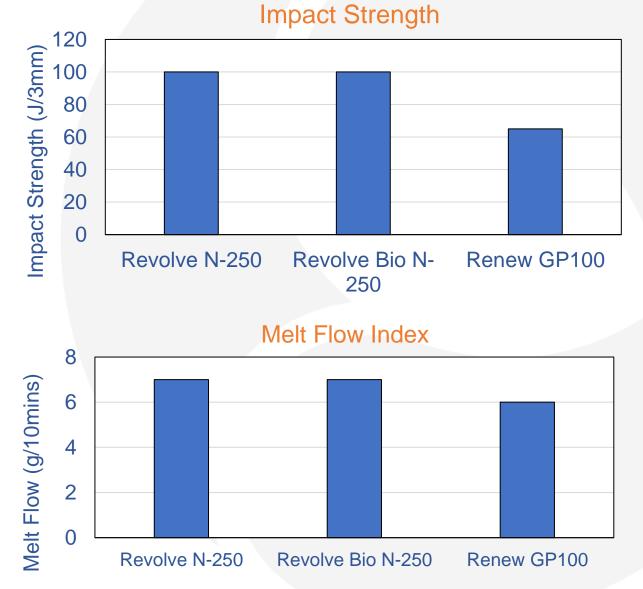
Use of Renewable Resources

- Replacement of fossil fuels
- Use of renewable feedstocks which are responsibility sourced

Value to your Business

- Significant value to your organization
- New markets, new applications and increased market advantage

Choosing of Biopolymers



Renew GP100 (Bio-sourced)

- Produced from green ethylene
- Measurable bio-based content (C14) by ASTM test
- Minimum 89% Bio-Content (ASTM D6866)

Revolve N-250 Bio & Revolve N-307 Bio (Mass Balance)

- Drop in solutions
- International Sustainability and Carbon Certification Recognized Method
- Multiple Feedstocks
- Designed for Roto[®]

UK Innovate Project

CP Cases, Queen's University and Matrix Polymers joined effort under the project funded by Innovate UK

This project focuses on revolutionizing rotational moulding by developing biopolymers paving the way for a more ecofriendly manufacturing process

Sustainability by Material Design

PCR – Post Consumer Recycled Based on HDPE & LLDPE from blow and injection moulding products and film applications

Bio-polymer – PE based

- 1. PE based on renewable resource such as sugar cane, starch and maize
- 2. PE based on crude tall oil, used cooking oil and vegetable oil

Bio-polymer – PA11 100% based on castor oil

Bio-polymer – PLA Polylactic Acid

Bio-polymer – PHA Poly-Hydroxyalkanoates

Matrix Polymers as a leading player in the rotomoulding industry, specializing in rotomoulding powders and offering comprehensive expertise and support.

Experience: A long history and proven track record in the rotomoulding industry

- Expertise: The company has a deep understanding of the technical aspects of rotomoulding and its capabilities
- Knowledge: Matrix Polymers has an extensive knowledge base on rotomoulding materials and processes, including specific expertise in rotomoulding powders

Matrix Polymers plays a role as a partner for innovation and growth in the rotomoulding industry. Our mission is to assist customers to not only solve technical problems but also in expanding their reach and exploring new markets.

To download your digital brochures

SCAN HERE

jake.kelly-walley@matrixpolymers.com

+44 (0) 1604 789 100

matrixpolymers.com