

Politechnika Lubelska Wydział Mechaniczny

Katedra Technologii i Przetwórstwa Tworzyw Polimerowych

Odlewanie rotacyjne polietylenu z zastosowaniem form z różnych materiałów metalicznych

dr inż. Karolina Głogowska

Wieliczka, 29-30.05.2025 r.

Plan prezentacji

- Analiza obecnego stanu wiedzy
 - Cel i zakres pracy
 - Metodyka badań
 - Wyniki badań
 - Wnioski

Analiza obecnego stanu wiedzy

Główne czynniki wpływające na proces odlewania rotacyjnego: ▶prędkość obrotowa formy odlewniczej,

➢temperatura i czas ogrzewania formy odlewniczej w komorze grzejnej,

>temperatura i czas chłodzenia formy odlewniczej,

>ciśnienie w gnieździe formującym formy odlewniczej,

materiał konstrukcyjny formy odlewniczej,

> grubość ścianki formy odlewniczej,

temperatura i czas ogrzewania formy odlewniczej w komorze grzejnej.

Cel naukowy pracy

Głównym celem naukowym pracy jest określenie wpływu:

- rodzaju materiału konstrukcyjnego formy odlewniczej,
- > grubości ścianki formy odlewniczej,
- temperatury i czasu ogrzewania formy w komorze grzejnej na proces odlewania rotacyjnego i właściwości odlewów z liniowego polietylenu małej gęstości.

Plan i metodyka badań doświadczalnych Czynniki stałe

Czynniki stałe:

- rodzaj tworzywa polimerowego liniowy polietylen małej gęstości (PE-LLD),
- masa tworzywa polimerowego 450 g,
- metoda chłodzenia formy odlewniczej wentylator,
- wartości prędkości obrotowych formy odlewniczej 12 obr/min (oś główna) i 3 obr/min (oś pomocnicza),
- czas ogrzewania formy odlewniczej w komorze grzejnej 1 200 s,
- kształt i wymiar odlewu prostopadłościan o wymiarach 196 mm x 196 mm x 195 mm.

Plan i metodyka badań doświadczalnych Tworzywo polimerowe użyte w badaniach

- Liniowy polietylen małej gęstości (PE-LLD) w postaci proszku o nazwie handlowej DOWLEX® 2629UE (tab. 1).
 - Tab. 1. Podstawowe właściwości liniowego polietylenu małej gęstości DOWLEX® 2629UE według danych producenta [3]

Właściwości	Wartość	Struktura cząsteczki (schemat)
Gęstość 23°C, kg/m ³	935	
Masowy wskaźnik szybkości płynięcia (190°C/2.16 kg), g/10 min	4,0	
Wytrzymałość na rozciąganie, MPa	17,5	
Wydłużenie względne przy zerwaniu, %	650	\wedge
Moduł Younga, MPa	645	
Twardość, °ShD	57	
Temperatura ugięcia pod obciążeniem (0,45 MPa), °C	65	$ \rightarrow $
Temperatura mięknienia wg Vicata, °C	119	γ
Temperatura topnienia, °C	124	
Odporność skrośna, Ω m	1015	
Stała dielektryczna (110 Hz)	2,3	

Plan i metodyka badań doświadczalnych Czynniki zmienne

Na podstawie przeglądu literatury oraz badań wstępnych określono następujące czynniki zmienne:

- materiał konstrukcyjny formy odlewniczej: stal niskowęglowa, mosiądz oraz aluminium,
- grubość ścianki form odlewniczych: 3 mm, 5 mm oraz 8 mm,
- temperatura w komorze grzejnej: 230°C, 250°C oraz 270 °C.

Plan i metodyka badań doświadczalnych Formy odlewnicze

Materiał konstrukcyjny form odlewniczych:

≻stal niskowęglowa,

≻mosiądz,

≻aluminium.

Rys. 2. Wygląd form odlewniczych o grubości ścianki 3 mm użytych w procesie odlewania rotacyjnego: a) forma odlewnicza ze stali niskowęglowej, b) mosiężna, c) aluminiowa Tab. 2. Skład chemiczny i właściwości materiałów konstrukcyjnych form odlewniczych

Skład chemiczny,	Stal niskowęglowa	Mosiądz	Aluminium
właściwości		Wartość	
			Al-95,64; Mg-
Skład chemiczny, %	$\begin{array}{c} Fe-99,25, C-0,12;\\ Mn-0,6; P-0,045; inne:\\ S, Si, P, S, Cr, Mo, Ni,\\ Al., Cu, B, Nb, Co, V,\\ W, Sn, Pb, As, Bi, Ca,\\ Ti, Sb, Zn, Zr \leq 0,016 \end{array}$	Cu-62,92, Zn- 36,96; Fe- 0,031; inne: Al; Pb, Sn, P, Mn, Ni, Cr, S, Sb, Si $\leq 0,01$	3,08; Si-0,34; Fe- 0,40; Cu-0,08; Mn- 0,024; inne: Zn, Ni, V, Pb, Sn, Co, Ag; B, Be, Bi, Ca, Cr, Ga, Li, Na, Sr, Ti, Zr, Cd, In ≤
	140 000	120	0,06
Granica plastyczności, MPa	140-280	130	80
Wytrzymałość na rozciąganie, MPa	270 - 410	340	240
Twardość metodą Vickersa, HV ₁₀	127,06	118,93	56,9
Gęstość, kg/m ³	7850	8440	2680
Współczynnik przewodzenia ciepła, W/(m K)	31,2	120	168
Ciepło właściwe, J/(kg K)	452	400	897
Dyfuzyjność cieplna, m ² /s10 ⁻⁵	0,9	3,6	6,9

Wieliczka, 29-30.05.2025 r.

Plan i metodyka badań doświadczalnych Warunki procesu odlewania rotacyjnego

Badania doświadczalne realizowano przy wykorzystaniu maszyny laboratoryjnej do odlewania rotacyjnego (rys. 4).

Rys. 3. Widok laboratoryjnej maszyny do odlewania rotacyjnego oraz odlewu: 1 – osłona układu narzędziowego, 2 – komora grzejna, 3 – forma odlewnicza, 4 – podstawa ramion formy odlewniczej, 5 – ramię formy odlewniczej, 6 – przekładnia stożkowa, 7 – przekładnia łańcuchowa, 8 – wentylator, 9 – silnik, 10 – osłona silnika

Plan i metodyka badań doświadczalnych

Warunki procesu odlewania rotacyjnego

Tab. 3. Matryca planu statycznego trójpoziomowego kompletnego (PS/DK 3³) z odkodowanymi czynnikami zmiennymi wraz z oznaczeniami próbek

Lp.	Materiał konstrukcyjny formy odlewniczej oraz wartość współczynnika przewodzenia ciepła, W/(m K)	Grubość ścianki formy odlewniczej, mm	Temperatura w komorze grzejnej, ℃	Oznaczenie próbek/ konfiguracje czynników zmiennych
1.		8	270	S/8/270
2.		8	250	S/8/250
3.		8	230	S/8/230
4.	Stal nickowaglowa	5	270	S/5/270
5.		5	250	S/5/250
6.	51,2	5	230	S/5/230
7.		3	270	S/3/270
8.		3	250	S/3/250
9.		3	230	S/3/230
13.		5	270	M/5/270
14.		5	250	M/5/250
15.	Mosiądz	5	230	M/5/230
16.	120	3	270	M/3/270
17.		3	250	M/3/250
18.		3	230	M/3/230
19.		8	270	Al/8/270
20.		8	250	Al/8/250
21.		8	230	Al/8/230
22.	A 1	5	270	Al/5/270
23.		5	250	Al/5/250
24.	108	5	230	Al/5/230
25.		3	270	Al/3/270
26.		3	250	Al/3/250
27.		3	230	Al/3/230

Metodyka badań doświadczalnych Proces odlewania rotacyjnego

[>]roces odlewania rotacyjnego

> 11

rozkład temperatury w komorze grzejnej, °C,

- rozkład temperatury na powierzchni formy odlewniczej, °C,

- rozkład temperatury powietrza w gnieździe formującym formy odlewniczej, °C,

- rozkład temperatury tworzywa polimerowego, °C,

- czas cyklu odlewania rotacyjnego, s

- stopień zestalenia, °C-min.

temperatura i jej rozkład w gnieździe formującym formy odlewniczej, °C,
 czas cyklu odlewania rotacyjnego, s,

rozkład grubości ścianki odlewów z PE-LLD, mm.

Metodyka badań doświadczalnych Badania właściwości odlewu

Badania właściwości odlewów

Statyczna próba rozciągania maszyna wytrzymałościowa ZwickRoell - wytrzymałość na rozciąganie, AllroundLine Z010, zgodnie z PN EN ISO 527-1 MPa Badanie właściwości mechanicznych Próba przebicia udarowego maszyna Instron Ceast 9350 HES - energia zużyta do zniszczenia zgodnie z PN-EN ISO 6603 próbek, J Skaningowa kalorymetria DSC Phox 200 P firmy NETZSCH, Badanie właściwości różnicowa zgodnie z PN EN ISO 11357-1 cieplnych - stopień krystaliczności, % Struktura geometryczna odlewu urządzenie 3D firmy Hommel-Etamic zgodnie z normą PN-EN 25178 - profil chropowatości Ra, µm Badanie strukturalne Struktura wewnętrzna próbek tomograf komputerowy Nikon M2 LES System odlewu

Wyniki badań Modelowanie procesu odlewania rotacyjnego

b)

Rys. 4. Rozkład temperatury podczas odlewania rotacyjnego dla form odlewniczych wykonanych ze stali niskowęglowej: a) S/3/230, b) S/3/270, c) S/8/230 i d) S/8/270; objaśnienia do wykresów: krzywa w kolorze czerwonym – temp. w komorze grzejnej, krzywa w kolorze zielonym – temp. na powierzchni zewnętrznej formy odlewniczej, krzywa w kolorze niebieskim – temp. w gnieździe formującym formy odlewniczej, krzywa w kolorze fioletowym – temp. tworzywa polimerowego w postaci proszku

a)

Wyniki badań Modelowanie procesu odlewania rotacyjnego

- Najkrótszy czas cyklu wyniósł 48 min (Al/3/230), a najdłuższy 55 min (S/3/230) czas cyklu uległ wydłużeniu o 12,12%.
- Najkrótszy czas cyklu wyniósł 73 min (Al/8/270), a najdłuższy 81 min (S/8/270) czas cyklu uległ wydłużeniu o 10,20%.

Rys. 5. Czas cyklu odlewania rotacyjnego w zależności od grubości ścianki materiału konstrukcyjnego formy odlewniczej i temperatury w komorze grzejnej: a) 230°C i b) 270°C

a)

Wyniki badań Modelowanie procesu odlewania rotacyjnego

b)

a)

Rys. 6. Stopień zestalenia tworzywa polimerowego w zależności od grubości ścianki materiału konstrukcyjnego formy odlewniczej i temperatury w komorze grzejnej: a) 230°C i b) 270°C

Wyniki badań Proces odlewania rotacyjnego

Rys. 7. Rozkład temperatury w gnieździe formującym formy odlewniczej podczas odlewania rotacyjnego dla form odlewniczych wykonanych ze stali niskowęglowej: a) S/3/230, S/3/270, b) S/8/230, S/8/270, c) Al/3/230, Al/3/270 i d) Al/8/230, Al/8/270

> 16

Wyniki badań Proces odlewania rotacyjnego

- Najkrótszy czas cyklu odnotowano dla próbki Al/3/230 45 min, a najdłuższy dla próbki S/8/230 62 min (czas cyklu uległ wydłużeniu 37,77%).
- Najkrótszy czas cyklu zaobserwowano dla próbki Al/3/270 47 min, a najdłuższy dla próbki S/8/270 68 min (czas cyklu uległ wydłużeniu 44,68%).

b)

Rys. 8. Czas cyklu odlewania rotacyjnego w zależności od grubości ścianki materiału konstrukcyjnego formy odlewniczej: a) temperatura w komorze grzejnej 230°C, b) temperatura w komorze grzejnej 270°C

a)

> 17

Wieliczka, 29-30.05.2025 r.

Wyniki badań Proces odlewania rotacyjnego

Rys. 9. Wyniki pomiarów rozkładu grubości ścianki odlewów z PE-LLD wykonanych za pomocą: a) stalowej, b) mosiężnej oraz c) aluminiowej formy odlewniczej

Wieliczka, 29-30.05.2025 r.

Wyniki badań Właściwości odlewów

Materiał konstrukcyjny formy odlewniczej

Wyniki badań Właściwości odlewów

Tab. 4. Wyniki wybranych pomiarów stopnia krystalicznościodlewów z liniowego polietylenu małej gęstości

Oznaczenie	Stopień krystaliczności V. %
próbek	Stopien Krystanczności Ak, %
S/3/230	60,14
S/3/270	59,60
S/5/230	60,89
S/5/270	59,10
S/8/230	60,65
S/8/270	59,10
M/3/230	58,21
M/3/270	49,68
M/5/230	58,32
M/5/270	57,22
Al/3/230	58,99
Al/3/270	48,78
Al/5/230	58,88
Al/5/270	50,93
Al/8/230	57,38
Al/8/270	57,49

- Największa wartość stopnia krystaliczności S/5/230 60,89%.
- Najmniejsze wartości X_k zaobserwowano dla materiałów M/3/270 (49,68%), Al/3/270 (48,78%) oraz Al/5/270 (50,93%), co odpowiada spadkowi o 18,41%, 19,88% i 16,35% w porównaniu do próbek S/5/230.

Wyniki badań Właściwości odlewów

Tab. 5. Wyniki wybranych pomiarów energii zużytej do zniszczenia (E_m) próbek odlewów z liniowego polietylenu małej gęstości

Oznaczenie	Wartość średnia pomiarów energii zużytej do
próbek	zniszczenia próbek odlewów z PE-LLD, J
S/3/230	$12,32 \pm 0,7$
S/3/270	$14,34 \pm 0,5$
S/5/230	$12,10 \pm 0,6$
S/5/270	$14,00 \pm 0,8$
S/8/230	$9,22 \pm 0,7$
S/8/270	$11,71 \pm 0,9$
M/3/230	$13,29 \pm 0,9$
M/3/270	$10,16 \pm 0,7$
M/5/230	$13,22\pm0,5$
M/5/270	$15,12 \pm 0,9$
Al/3/230	$14,68 \pm 0,9$
Al/3/270	$12,21 \pm 0,7$
Al/5/230	$13,39 \pm 0,8$
Al/5/270	$12,16 \pm 0,6$
Al/8/230	$11,80 \pm 0,6$
Al/8/270	$13,71 \pm 0,9$

 Największe wartości E_m - AI/3/230 (14,68 J), M/5/270 (15,12 J) oraz AI/8/270 (13,71 J),

Najmniejsze wartości E_m - S/3/230 (12,32 J), S/5/230 (12,10 J) oraz S/8/230 (9,22 J),

Wyniki badań Właściwości odlewów

Wyniki badań Właściwości odlewów

 Przyczyną występowania wad był nieodpowiedni dobór temperatury w komorze grzejnej, w zależności od rodzaju materiału konstrukcyjnego i grubości ścianki formy odlewniczej oraz na niska temperatura w gnieździe formującym formy odlewniczej.

Rys. 12. Wyniki analizy porowatości próbek odlewów z PE-LLD wytworzonych przy użyciu formy odlewniczej ze stali niskowęglowej o grubości ścianki 5 mm i temperaturze w komorze grzejnej: a) 230°C, b) 250°C i c) 270°C

Wieliczka, 29-30.05.2025 r.

Wnioski poznawcze

- Komputerowe badania symulacyjne odlewania rotacyjnego wykazały znaczący wpływ materiału konstrukcyjnego formy odlewniczej, grubości ścianki, temperatury w komorze grzejnej oraz czasu ogrzewania na rozkład temperatury powietrza w gnieździe formującym formy odlewniczej, czas cyklu odlewania rotacyjnego oraz stopień zestalenia.
- Wyniki symulacji komputerowej i badania doświadczalne procesu odlewania rotacyjnego wykazały, że najlepszym materiałem konstrukcyjnym formy odlewniczej użytym w badaniach odlewania rotacyjnego jest aluminium. Stosując aluminiową formę odlewniczą osiągnięto rozkład temperatury najbardziej zbliżony do temperatury w komorze grzejnej, najdłuższy czas utrzymania tworzywa polimerowego w stanie plastycznym/ciekłym, najkrótszy czas cyklu, największą wartość stopnia zestalenia tworzywa polimerowego oraz najbardziej równomierny rozkład grubości ścianki odlewu.
- Zwiększenie grubości ścianki formy odlewniczej (od 3 do 8 mm) i temperatury (od 230°C od 270°C) w komorze grzejnej powoduje wydłużenie czasu cyklu odlewania rotacyjnego.
- Najkrótszy czas cyklu zaobserwowano dla aluminiowych form odlewniczych, z kolei najdłuższy dla form stalowych. Odpowiedni dobór warunków odlewania rotacyjnego może wpłynąć na skrócenie czasu cyklu odlewania rotacyjnego nawet o 44%.

Wnioski poznawcze

- Czynniki zmienne przyjęte w badaniach mają wpływ na właściwości mechaniczne, cieplne, powierzchniowe i strukturalne odlewów z PE-LLD.
- Wzrost temperatury w komorze grzejnej oraz zmniejszanie grubości ścianki formy odlewniczej powodują polepszenie właściwości próbek z odlewów (S/3-8/230-270). Zatem poprzez odpowiedni wybór warunków odlewania rotacyjnego, można wpływać na uzyskanie odlewów o oczekiwanych właściwościach użytkowych.
- Największe wartości właściwości mechanicznych oraz odporności na obciążenia dynamiczne otrzymano dla odlewów wytworzonych przy użyciu aluminiowych form odlewniczych, natomiast najmniejsze w przypadku próbek otrzymanych przy użyciu stalowych form odlewniczych.
- Zastosowanie wysokiej temperatury w komorze grzejnej (270°C) i długiego czasu ogrzewania dla form odlewniczych wykonanych z materiałów metalicznych o wysokim współczynniku przewodzenia ciepła i małej grubości ścianki formy odlewniczej powoduje obniżenie właściwości mechanicznych, odporności na uderzenie i stopnia krystaliczności odlewów.

_	

Literatura

[1] Crawford R.J., Kearns M.P.: Practical guide to rotational moulding. Elsevier, United Kingdom, 2021

[2] Głogowska K., Pączkowski P., Samujło B.: *Study on the Properties and Structure of Rotationally Moulded Linear Low-Density Polyethylene Filled with Quartz Flour*. Materials, 15 (6), 2022, s. 2154

[3] Crawford R.J., Throne J.L.: *Rotational molding technology*. William Andrew, United States of America, 2001.

[4] Crawford R.J.: *Practical guide to rotational moulding*. Smithers Rapra, United Kingdom, 2012

[5] Kutz M.: *Applied plastics engineering handbook: processing and materials*. William Andrew, United States of America, 2016.
[6] Ramkumar P.L., Ramesh A., Alvenkar P.P., Patel N.: *Prediction of heating cycle time in Rotational Moulding*. Materials Today: Proceedings, 2 (4-5), 2015, s. 3212–3219.

[7] Sikora R.: *Przetwórstwo tworzyw polimerowych: podstawy logiczne, formalne i terminologiczne: praca zbiorowa*. Wydawnictwo Politechniki Lubelskiej, Lublin, 2006.

[8] Umbare V., Arakerimath R.: Investigating the influence of peak internal air temperature (PIAT) on material characteristics of linear low-density polyethylene (LLDPE) during rotational moulding. Engineering Research Express, 6 (1), 2024, s. 015043.

[9] Löhner M., Drummer D.: *Characterization of layer built-up and inter-layer boundaries in rotational molding of multi-material parts in dependency of the filling strategy*. Journal of Polymer Engineering, 37 (4), 2017, s. 411–420.

[10] Nguyen H.T., Cosson B., Lacrampe M.F., Krawczak P.: Numerical simulation on the flow and heat transfer of polymer powder in rotational molding. International Journal of Material Forming, 8 (3), 2015, s. 423–438.

[11] Gogos G.: Bubble removal in rotational molding. Polymer Engineering and Science, 44 (2), 2004, s. 388–394.

[12] Qin L., Ding Y.M., Zhu G.C., Yu H.C., Yang W.M.: Heat flow analysis and efficiency optimization of rotational molding equipment.

Odlewanie rotacyjne polietylenu z zastosowaniem form z różnych materiałów metalicznych

Dziękuję za uwagę

Politechnika Lubelska Wydział Mechaniczny Katedra Technologii i Przetwórstwa Tworzyw Polimerowych

dr inż. Karolina Głogowska

